
Useful Facts, Identities, Inequalities
Linear Algebra

Notation
Notation Name Comment
A a matrix indicated by capitalization and bold

font
[A]ij the element from the i-th row and j-th

column of A
Sometimes denoted Aij for brevity

Mn the set of complex-valued matrices
with m rows and n columns

e.g., A ∈ Mm,n

Mn the set of complex-valued square
matrices

e.g., A ∈ Mn

I the identity matrix e.g., I = diag [1, 1, . . . , 1]
e vector of ones
σi(A) i-th singular value of A Typically, we assume sorted order:

σ1(A) ≥ σ2(A) ≥ . . .
λi(A) the i-th eigenvalue of A may also write λ(A) = {λi}i for the

set of eigenvalues.
ρ(A) the spectral radius of A ∈ Mn ρ(A) = max

1≤i≤n
{|λi|}

Ā the complex conjugate of A operates entrywise, e.g. Aij = Āij

A⊤ the matrix transpose of A
A† the conjugate transpose of A e.g., A† def

= (Ā)⊤

A−1 the matrix inverse of A e.g., A−1A = I
A+ the Moore-Penrose pseudoinverse of A sometimes may just use A−1 due to

sloppy notation

Definitions
Definition 1 (Complex Conjugate). Let A ∈ Mn, then A† = (Ā)⊤.
Definition 2 (Symmetric Matrix). A matrix A such that A = A⊤

Definition 3 (Hermitian Matrix). A matrix A such that A = A† = (Ā)⊤.
Definition 4 (Normal Matrix). A normal ⇔ A†A = AA†

That is, a normal matrix is one that commutes with its conjugate transpose.
Definition 5 (Unitary Matrix). A unitary ⇔ I = A†A = AA†.
Definition 6 (Orthogonal Matrix). A square matrix A whose columns and rows are
orthogonal unit vectors, that is AA⊤ = A⊤A.
Definition 7 (Idempotent matrix). A matrix such that AA = A.
Definition 8 (Nilpotent Matrix). A matrix such that A2 = AA = 0.
Definition 9 (Unipotent Matrix). A matrix A such that A2 = I.
Definition 10 (Stochastic Matrix). Consider a matrix, say P with no negative entries. P
is row stochastic matrix if each row sums to one; it is column stochastic if each column sums
to one. By convention, usually mean row stochastic when using “stochastic” without
qualification. A matrix is doubly stochastic if it is both row and column stochastic.
Definition 11 (Matrix congruence). Two square matrices A and B over a field are called
congruent if there exists an invertible matrix P over the same field such that P⊤AP = B.
Definition 12 (Matrix similarity). Two square matrices A and B are called similar if there
exists an invertible matrix P such that B = P−1AP.
A transformation A 7→ P−1AP is called a similarity transformation or conjugation of the
matrix A.

Special Matrices and Vectors
The vector of all ones, 1 = (1, 1, . . . , 1)⊤.

v1⊤ = v ⊗ 1 =


v1 v1 · · · v1
v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn

 (1)

Standard Basis
The standard (euclidean) basis for Rn is denoted {ei}ni=1, with ei ∈ Rn, and

[ei]
def
=

{
1 if i = j

0 i 6= j
(2)

General Information
Symmetric Matrices

•Any matrix congruent to a symmetric matrix is itself symmetric, i.e. if S is symmetric,
then so is ASA⊤ for any matrix A.

•Any symmetric real matrix can be diagonalized by an orthogonal matrix.

Determinants
Lemma 1. [Sylvester’s Identity]
Let A ∈ Mm,n and B ∈ Mn,m. Then:

det(Im +AB) = det(In +BA) (3)

Determinant Facts
For A ∈ Mn with eigenvalues λ(A) = {λ1, . . . λn},

•tr(A) =
∑n

i=1 λi

•det(A) =
∏n

i=1 λi

•Also, det(exp {A}) = exp {tr(A)}.
Lemma 2 (Block Matrix Determinants). Let M ∈ Mn+m be a square matrix partitioned as:

M =

(
A B
C D

)
(4)

where A ∈ Mn, D ∈ Mm, with B and C being n×m and m× n respectively.
If B = 0n,m or C = 0m,n, then

det(M) = det(A) det(D) (5)

Furthermore, if A is invertible, then

det(M) = det(A) det
(
D−CA−1B

)
(6)

A similar identity holds for D invertible.
Lemma 3 (Block Triangular Matrix Determinants). Consider a matrix M ∈ Mm,n of the
form:

M =


S11 S12 · · · S1n

S21 S22 · · · S2n

...
. . .

...
Sn1 Sn2 · · · Snn

 (7)

where each Sij is an m×m matrix.
If M is in block triangular form (that is, Sij = 0 for j > i), then

det(M) =
n∏

i=1

det(Sii) = det(S11) det(S22) · · · det(Snn) (8)

Definiteness
Definition 13: Definiteness

A square matrix A is
•positive definite if x†Ax > 0 ∀x 6= 0.
•positive semi-definite if x†Ax ≥ 0 ∀x.

Similar definitions apply for negative (semi-)definiteness and indefiniteness.

Some sources argue that only Hermitian matrices should count as positive definite, while
others note that (real) matrices can be positive definite according to definition 13, although
this is ultimately due to the symmetric part of the matrix.

Remark 1: non-symmetric positive definite matrices

If A ∈ Mn(R) is a (not necessarily symmetric) real matrix, then x⊤Ax > 0 for all
non-zero real x if the symmetric part of A, defined as A+ = (A + A⊤)/2, is positive
definite.
In fact, x⊤Ax = x⊤A+x ∀x because

x⊤Ax = (x⊤Ax)⊤ = x⊤A⊤x =
1

2
x⊤(A+A⊤)x (9)

Facts about definite matrices
Assume A is positive definite. Then:

•A is always full rank.

•A is invertible and A−1 is also positive definite.

•A is positive definite ⇔ there exists an invertible matrix B such that A = BB⊤.

•Aii > 0

•rank(BAB⊤) = rank(B).

•det(A) ≤
∏

i Aii

•If X ∈ Mn,r, with n ≤ r and rank(X) = n, then XX⊤ is positive definite.

•A positive definite ⇔ eig(A+A†

2
) > 0 (and ≥ 0 for A positive-semidefinite).

•If B is symmetric, then A− tB is positive definite for sufficiently small t.

Projections

Definition 14

Let V be a vector space, and U ⊆ V be a subspace. The projection of v ∈ V onto some
subspace with respect to some norm ‖·‖q is:

Πv
def
= argmin

u∈U
‖v − u‖q (10)

For the (weighted) Euclidean norm, Π can itself be expressed as a matrix.

ΠD = X(X⊤DX)−1X⊤D (11)

Although sometimes we just write Π instead of ΠD.

Projection Facts
•Projections are idempotent, i.e., Π2 = Π.

•A square matrix Π ∈ Mn is called an orthogonal projection matrix if Π2 = Π = Π†.

•A non-orthogonal projection is called an oblique projection, usually expressed as
Π = A(B⊤A)−1B⊤.

•The triangle inequality applies, ‖x‖ = ‖(I−Π)x+Πx‖ ≤ ‖(I−Π)x‖+ ‖Πx‖.

Singular Values
Let A ∈ Cm×n and r = min{m,n}, with σ(A) = {σk(A)}rk=1, and U, V are subspaces with
U ⊆ Cn, V ⊆ Cm.

σk(A) = max
dim(U)=k

min
x∈U

∥x∥=1

‖Ax‖2 = min
dim(U)=n−k+1

max
x∈U

∥x∥=1

‖Ax‖2

= max
dim(U)=k
dim(V )=k

min
x∈U
x∈V

y⊤Ax

‖x‖2‖y‖2
= max

dim(U)=k
min
x∈U

‖Ax‖
‖x‖2

(12)

•σ1(A) = |||A|||2

•σi(A) = σi(A
⊤) = σi(A

†) = σi(Ā).

•σ2
i (A) = λi(AA†) = λi(A

†A).

•For U and V (square) unitary matrices of appropriate dimension, σi(A) = σi(UAV).

◦This also connects to why ‖A‖2 = σ1, because ‖·‖2 is unitarily invariant,
‖diag(d)‖ = maxi |di|, so ‖A‖2 =

∥∥UΣV†∥∥
2
= ‖Σ‖2 = σ1(A).

Matrix Inverse
Identities

• (AB)−1 = B−1A−1

• (A+CBC⊤)−1 = A−1 −A−1C(B−1 +C⊤A−1C)−1C⊤A−1

•

•



Moore-Penrose Pseudoinverse
Decompositions

Symmetric Decomposition
A square matrix A can always be written as the sum of a symmetric matrix A+ and an
antisymmetric matrix A−, such that A = A+ +A−.

QR Decomposition
A decomposition of a matrix A into the product of an orthogonal matrix Q and an upper
triangular matrix R such that A = QR.

Singular Value Decomposition
Rewriting Matrices
We can rewrite some common expressions using the standard basis ei and the single-entry
matrix Jij = eie

⊤
j :

AijBkℓ = [Aeje
⊤
k B]iℓ = [AJjkB]iℓ

= [A⊤eie
⊤
k B]jℓ = [AJikB]jℓ

= [Aeje
⊤
ℓ B⊤]ik = [AJjℓB]ik

= [A⊤eie
⊤
ℓ B⊤]jk = [A⊤JiℓB⊤]jk

(13)

Note that the above identities can be derived from each other via appropriate transpositions.
The single-entry matrix can also be used to extract rows and columns of a matrix. Let A be
n×m and Jij be m× p. Then AJij is a p×m matrix of zeros except for the j-th column,
which is the i-th column of A.

AJij =


0 0 · · · A1i 0 · · · 0
0 0 · · · A2i 0 · · · 0
...

...
. . .

...
...

. . . 0
0 0 · · · Ani 0 · · · 0

 (14)

For appropriately sized Jij , we can use the Kronecker delta to express:

[AJij ]k,ℓ = δjℓAki [JijA]k,ℓ = δikAjℓ (15)

Quadratic Forms

Definition 15: Quadratic Form

Given A ∈ Mn, x ∈ Cn, the scalar value x†Ax is called a quadratic form. Explicitly,

x†Ax =

n∑
i

x̄i

∑
j

Aijxj =

n∑
i

∑
j

Aij x̄ixj (16)

For x ∈ Rn, this becomes x⊤Ax =
∑n

i,j Aijxixj .

The definiteness of quadratic forms maps to the definiteness of A in a pretty natural way
(see remark 1).

Norms
Vector Norms

1. ‖x‖ ≥ 0.
2. ‖0‖ = 0.
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
4. ‖ax‖ = |a|‖x‖ for any scalar a.

Definition 16 (p-norms).

‖x‖p
def
=

(∑
i

|xi|p
)1/p

(17)

For p = ∞ this becomes the max norm or infinity norm,

‖x‖∞
def
= max

i
|xi| (18)

Vector Norm Inequalities
|〈x,y〉| ≤ ‖x‖p‖q‖q for 1

p
+ 1

q
= 1. (Holder)

|〈u,v〉| ≤ ‖u‖2 ≤ ‖v‖2 (Cauchy)
‖u+ v‖p ≤ ‖u‖p + ‖v‖p for p > 1 (Minkowski)
‖x‖q ≥ ‖x‖p for p > q > 0 (Generalized Mean)

Miscellaneous facts
• ‖Av‖2 = (v⊤A⊤Av)1/2 ≤

∥∥A⊤A
∥∥1/2
2

(v⊤v)1/2.

• | det(A)| = σ1σ2 · · ·σn, where σi is the i-th singular value of A.

• All eigenvalues of a matrix are smaller in magnitude than the largest singular value,
i.e., σ1(A) > |λi(A)|. In particular, |λ1(A)| = ρ(A) ≤ σ1(A) = ‖A‖2.

Matrix Norms
Properties
|||αA||| = |α||||A||| (absolutely homogeneous)
|||A+B||| ≤ |||A|||+ |||B||| (sub-additive)
|||A||| ≥ 0 (positive valued)
|||A||| = 0 ⇒ A = 0 (definiteness)
|||AB||| ≤ |||A||||||B||| (sub-multiplicative)
Some vector norms, when generalized to matrices, are also matrix norms.
We use |||·||| when denoting a norm satisfying all five of the above properties, and ‖·‖ to
denote the “generalized norms” that are not sub-multiplicative.

Common Matrix Norms
Let A ∈ Mm,n.

Notation Name Formula
|||A|||p Lp-norm max

∥x∥p=1
‖Ax‖p

|||A|||1 L1-norm |||A|||1 = max
1≤j≤n

m∑
i=1

|Aij |

|||A|||2 L2-norm
|||A|||2 = σ1(A)

=

√
λmax(A

†A)

|||A|||F Frobenius norm

|||A|||F =

√√√√ m∑
i=1

n∑
j=1

|Aij |2

=

√
tr(A†A)

=

√√√√minm,n∑
i=1

σ2
i

|||A|||∞ L∞-norm |||A|||∞ = max
1≤i≤m

n∑
j=1

|Aij |

Miscellaneous Matrix Norm Facts
•
∥∥A+

∥∥
2
= σmin(A)

Other Norms

Matrix Norm Inequalities
•|||A|||2 ≤

√
|||A|||1|||A|||∞

•|||·||| is an induced norm ⇒ ρ(A) ≤ |||Ar|||1/r

◦For |||·|||2 and A Hermitian, we have |||A|||2 = ρ(A)

•|||A|||2 ≤ |||A|||F ≤
√

min {m,n}|||A|||2
•Weyl’s inequality (TODO)

Inequality Conditions Comments

|||A1/2XB1/2||| ≤
1

2
|||AvXB1−v +A1−vXBv |||

≤
1

2
|||AX+XB|||

0 < v ≤ 1, A,
B,X ∈ Mn, A, B
positive
semidefinite

Heinz Inequality
for Matrices

|||Ab||| ≤ 1
4
|||(A+B)2||| ≤ 1

2
|||A2 +B2||| A,B positive

semi-definite, |||·|||
unitarily invariant.

Bhatia and
Kittaneh

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖ ‖·‖ is induced norm ...
|||A|||p ≤ |||A|||q ... ...
|||A|||p ≤ |||A|||q ... ...

Induced norms
Definition 17 (Induced Norm). A matrix norm |||·||| is said to be induced by the vector
norm ‖·‖ if

|||M||| = max
∥x∥=1

‖Mx‖ (19)

For an induced norm |||·||| we have:
|||I||| = 1

|||Ax||| ≤ |||A|||‖x‖ for all matrices A and vectors x
|||AB||| ≤ |||A||||||B||| for all A,B

For a weighted norm with W a symmetric positive definite matrix, we have

‖x‖W
def
=
√

x⊤Wx =
∥∥∥W1/2x

∥∥∥
2

(20)

The corresponding induced matrix norm is

|||A|||W
def
= max

x̸=0

‖Ax‖W
‖x‖W

= max
y ̸=0

∥∥∥W1/2AW−1/2y
∥∥∥
2∥∥∥W1/2y

∥∥∥
2

= |||W1/2AW−1/2|||2

(21)

Spectrum of a Matrix
Definition 18 (Spectral Radius). The spectral radius ρ(A) of a matrix A ∈ Mn is

ρ(A)
def
= max{|λ| : λ is an eigenvalue of A} (22)

For square matrices, we have limr→∞|||Ar|||1/r = ρ(A).
Theorem 4. If |||·||| is a submultiplicative matrix norm and A ∈ Mn, then

ρ(A) ≤ |||A||| (23)

Proof. Let v be the eigenvector associated with λ, with |λ| = ρ(A). Consider the matrix V
with columns equal to v, i.e. [V]ij = vj . Note that AV = λV. So we have,

|λ||||V||| = |||λV||| = |||AV||| ≤ |||A||||||V||| (24)
So |λ| = ρ(A) ≤ |||A|||.

Theorem 5 (Weyl’s Inequality for Eigenvalues and Singular Values). Let A ∈ Mn be a
square matrix with singular values sigma1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and eigenvalues
|λ1| ≥ · · · ≥ |λn|. Then

|λ1 · · ·λk| ≤ σ1 · · ·σk (25)
for k = 1, . . . , n, with equality for k = n.

Norm equivalence
Definition 19 (Unitarily Invariant Norm). ...

Facts
1. If D = diag(d1, d2, . . . , dN ), then |||D||| = maxi |di|.
2. |||A⊤A|||F = |||AA⊤|||F ≤ |||A|||2F
3. |||A+B|||F = |||A|||F + |||B|||F + 2〈A,B〉F

Hadamard Product
Definition 20. Let A,B ∈ Mn,r. Then the Hadamard product (AKA Schur product,
elementwise product) of A and B is denoted A ◦B and defined such that

[A ◦B]ij
def
= AijBij (26)

Identities
• A ◦B = B ◦A

• A ◦ (B ◦C) = (A ◦B) ◦C

• A ◦ (B+C) = (A ◦B) + (A ◦C)

• (kA) ◦B = A ◦ (kB) = k(A ◦B)

• (A ◦B)⊤ = A⊤ ◦B⊤

• A ◦ 1 = A (identity operation, 1 is the matrix with all entries one).
• A ◦ (xy†) = DxADy = diag(x)A diag(y).
• (X ◦ ab⊤)(Y ◦ cd⊤) = (ad⊤) ◦ (X diag(b ◦ c)Y)

• (A ◦ xy⊤)z = x ◦ (A(y ◦ z))



• For Dx and Dy diagonal matrices,

Dx(A ◦B)Dy = (DxADy) ◦B = A ◦ (DxBDy)

= (DxA) ◦ (BDy) = (ADy) ◦ (DxB)
(27)

• a ◦ b = Dab (vector product)
• (a ◦ b)(x ◦ y)⊤ = (ax⊤) ◦ (by⊤) = (ay⊤) ◦ (bx⊤)

• x†(A ◦B)y = tr(D†
xADyB

⊤)

• [(A ◦B)x]i = [ADxB
⊤]ii

•
∑

j [A ◦B]ij = [B⊤A]jj = [AB⊤]ii. That is, the row sums of A ◦B are the diagonal
elements of AB⊤

Inequalities
For A = [Aij ] ∈ Mm,n, denote the decreasingly ordered Euclidean row and column lengths
respectively by

r1(A) ≥ r2(A) ≥ · · · ≥ rm(A)

c1(A) ≥ c2(A) ≥ · · · ≥ cn(A)
(28)

where rk(A) is the k-th largest value of
(∑n

j=1 |Aij |2
) 1

2 for i = 1, 2, . . . ,m and similarly for
ck(A). Then:

σ1(A ◦B) ≤ r1(A)c1(B) ≤
{
r1(A)σ1(B)

σ1(A)c1(B)

}
≤ σ1(A)σ1(B) (29)

(from [HJ91], theorem 5.5.3, pg. 332)
Conditions

|||A ◦B|||2 ≤
(

1
2
|||A|||22|||B|||22 + |||AB†|||2

)1/2
≤ |||A|||2|||B|||2 A,B ∈ Mn

σ1(A ◦B) ≤ σ1(A)σ1(B) A,B ∈ Mm,n

det(A ◦B) ≥ det(A) det(B) A,B positive-semidefinite.

Stochastic Matrices
• ρ(P) = 1 ≤ σ1(P)

• |||P|||2 = σ1(P) = 1 ⇔ P is doubly stochastic.

• If P is doubly stochastic, then so is P⊤P

Some Results on Stochastic Matrices
For P aperiodic and irreducible, with stationary distribution d and D

def
= diag(d), we have

|||DP|||2 ≤ 1 (30)

Proof. Note that by definition, 0 ≤ Pij < 1, and 0 < di < 1. Then,

|||DP|||2 ≤ |||DP|||F =

∑
i

∑
j

[DP]2ij

1/2

∑
i

∑
j

[DP]2ij =
∑
i

∑
j

d2iP
2
ij ≤

∑
i

d2i
∑
j

Pij =
∑
i

d2i ≤ 1

⇒ |||DP|||2 ≤ |||DP|||F ≤ 11/2 = 1

(31)

The bound is actually pretty tight, gets close to exact as the distribution becomes more
concentrated in a single state. Generally |||DP|||2 is pretty close to |||d|||22, which can be
justified in a hand-wavy manner.
NB: We don’t use strict inequality here, though we could, since I think this could be generalized to other kinds of
stochastic matrices, and so I’m future-proofing.

We can use a variation of the above to show that |||P|||D is a non-expansion in the
distribution-weighted Euclidean norm, as in lemma 6.
Lemma 6 (Stochastic Matrix is a Non-Expansion in Distribution Weighted Euclidean
Norm). Let P ∈ RN×N be an ergodic stochastic matrix with stationary distribution
d = (d1, d2, . . . , dN , with D = diag(d).
Then P is a non-expansion in the weighted Euclidean norm ‖·‖D, that is,

‖Pz‖D ≤ ‖z‖D (32)

Proof of lemma 6. (From Lemma 1 in [TV97])
Recall that d⊤P = d⊤, and then expand:

‖Pz‖2d = (Pz)⊤DPz =

N∑
i=1

d(i)

 N∑
j

Pijzj

2

≤
N∑
i=1

d(i)
N∑
j

Pijz
2
j =

N∑
i=1

N∑
j

d(i)Pijz
2
j

=

N∑
j=1

N∑
i

d(i)Pijz
2
j =

N∑
j=1

d(i)z2j

= ‖z‖2D

(33)

Where we first applied Jensen’s inequality as the function f(x) = x2 is convex, and then
interchange the order of summation via the Fubini-Tonelli theorem1. For the penultimate
step, we recognize that

∑N
i Pijd(i) corresponds to d⊤P, and then note that what remains is

just ‖z‖D.

Lemma 7 (Bounded Features, Bounded Feature Matrix). Suppose we have ‖x(i)‖2 ≤ Kb

for some Kb > 0 for i = 1, . . . , N , and let X ∈ RN×m be the feature matrix with
[X]ij = xj(i). Let D be a diagonal matrix D = diag (d), with di ≥ 0 and

∑
i di = 1. Then

we have an L2 norm bound of the form:

|||DX|||2 ≤ |||D
1
2 X|||2 ≤ Kb (34)

(This is a bit of a niche result, but even some experts have missed it)

lemma 7. First, note that

|||DX|||2 = |||D
1
2 (D

1
2 X)|||2 ≤ |||D

1
2 |||2|||D

1
2 X|||2 ≤ |||D

1
2 X|||2 (35)

Then use the fact that |||·|||2 ≤ |||·|||F to get

|||D
1
2 X|||2 ≤ |||D

1
2 X|||F (36)

and upon expanding

|||D
1
2 X|||2F =

∑
i

∑
j

[D
1
2 X]2ij =

∑
i

∑
j

diX
2
ij =

∑
i

di
∑
j

X2
ij

≤
∑
i

K2
b = K2

b

(37)

so we have
|||DX|||2 ≤ |||D

1
2 X|||2 ≤ |||D

1
2 X|||F ≤

(
K2

b

) 1
2 = Kb

(38)

1Exchanging the order of summation can actually be ill-defined if the series contain subsequences diverging to both positive and negative infinity. Given that d(·), P (·, ·) and z2(·) are positive-valued functions this does not happen– but since we are dealing with a finite state space,
hence the sequence cannot diverge at all. Presumably the original proof invoked it for maximum generality, because this lemma would hold in the setting where the state space was continuous (requiring only changes to the notation). See [Coh80] or another book on analysis for further
details.



Sequences, Series, and Products
Identities

Series identities
Identity Conditions Comments

∞∑
n=0

xn =
1

1− x
|x| < 1 Infinite Power

Series( ∞∑
n=0

anx
n

)2

=

∞∑
k=0

a2nx
2n + 2

∞∑
n=1

i+j=n
i<j

aiajx
n Square of

Geometric
Series(

n∑
k=1

akbk

)2

=

n∑
k=1

a2k

n∑
k=1

b2k −
1

2

n∑
i=1

n∑
j=1

(aibj − ajbi)
2 Lagrange’s

Identity
n∑

k=0

log(ak) = log

(
n∏

k=0

ak

)
0 < ak ∈ R,
n ∈ N

Log-Sum
Identity

n∑
k=0

log(zk) = log

(
n∏

k=0

zk

)
− 2πib

π −
∑n

k=0 arg(zk)

2π
c n ∈ N General

Log-Sum
Identity

m∑
k=0

k∑
j=0

akbj =
m∑

j=0

m∑
k=j

akbj Triangle-Sum
Reordering

m∑
k=0

p∑
j=k

akbj =
m∑

j=0

j∑
k=0

akbj +

p∑
j=m+1

m∑
k=0

akbj 0 ≤ k ≤ m,
0 ≤ k ≤ j ≤ p

Quadrangle-
Sum

Reordering
∞∑

k=0

∞∑
j=0

akbj =
∞∑
j=0

j∑
k=0

akbj−k Infinite Double
Sum

Reordering
∞∑

k=0

k∑
j=0

akbj =
∞∑
j=0

∞∑
k=j

akbj Infinite Double
Sum

Reordering
(Many taken from Wolfram/MathWorld)

Inequalities
Cauchy Schwarz
For {ak} and {bk} two sequences, we have(

N∑
k

akbk

)2

≤
(

N∑
k

a2k

)(
N∑
k

b2k

)
(39)

Some direct implications:

(ac+ bd)2 ≤ (a2 + b2)(c2 + d2) (40)

For ai, bi > 0, we have Titu’s Lemma:

(a1 + a2 + · · ·+ an)2

b1 + b2 + · · ·+ bn
≤

a21
b1

+
a22
b2

+ · · ·+
a2n
bn

(41)

For 0 ≤ x < 1:

∞∑
k=0

akx
k ≤

1
√
1− x2

( ∞∑
k=0

a2k

) 1
2

(42)

n∑
k=1

ak

k
<

(
2

n∑
k=1

a2k

) 1
2

(43)

Arithmetic and Geometric Mean Inequality
In general, the arithmetic mean is larger:(

n∏
k=1

|ak|
) 1

n

≤
1

n

n∑
k=1

|ak| (44)

There are some particular implications of interest.
Let {ai} be a sequence of nonnegative real numbers, and let {pi} be a sequence of positive
reals that sums to one. Then, via the exponential bound:

n∏
k=1

a
pk
k ≤

n∑
k=1

pkak (45)

Power Mean Bound for Geometric Mean [Ste04, p. 122] For weights pk,
k = 1, 2, . . . , n with pk ≥ 0,

∑n
k=1 pk = 1, and xk >≥ 0, there is the bound:

n∏
k=1

x
pk
k ≤

[
n∑

k=1

pkx
q
k

]1/q
(46)

for all q > 0.

Power Mean Inequality [Ste04, p. 123] For weights pk, k = 1, 2, . . . , n with
pk ≥ 0,

∑n
k=1 pk = 1, and xk >≥ 0, there is the bound:[

n∑
k=1

pkx
t
k

]1/t
≤
[

n∑
k=1

pkx
q
k

]1/q
(47)

for all −∞ < t < q < ∞, with equality if and only if x1 = x2 = · · · = xn.

Sums of Squares
Product of two linear forms:

n∑
j=1

ujxj

n∑
j=1

vjxj ≤
1

2

 n∑
j=1

ujvj +

 n∑
j=1

u2
j

 1
2
 n∑

j=1

v2j

 1
2

 n∑
j=1

x2
j (48)

for {ui}, {vi}, {xi} real valued.

https://functions.wolfram.com/GeneralIdentities/12/


General and Miscellaneous
(Facts/information that will be split into their own areas once enough are collected)

Algebraic Identities
a2 − b2 = (a+ b)(a− b)
(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 (Fibonacci-Brahmagupta)

Stirling’s Approximation
Stirling’s approximation: given as

ln(n!) = n ln(n)− n+O(lnn)

or

n! ≈
√
2πn

(n
e

)n
≈ nne−n

(49)

With the following bounds that hold for n ∈ N+:
√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n (50)

Inequalities
|〈x,y〉| ≤ ‖x‖p‖q‖q for 1

p
+ 1

q
= 1. (Holder)

|〈u,v〉| ≤ ‖u‖2 ≤ ‖v‖2 (Cauchy-Schwarz)
‖u+ v‖p ≤ ‖u‖p + ‖v‖p for p > 1 (Minkowski)
‖x‖q ≥ ‖x‖p for p > q > 0 (Generalized Mean)

(Jensen)(∏n
k=1 |ak|

) 1
n ≤ 1

n

∑n
k=1 |ak| (AM-GM)

(Radon)
1 + x ≤ ex for x ∈ R (Exponential Bound)
1 + nx ≤ (1 + x)n for x ≥ −1, n ≥ 1. (Bernoulli)
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